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Spatio-temporal evolution, of large-amplitude Alfvkn  waves,  is  investi- 

gated by  means of their  characteristic evolution equations as well as by MHD 

simulations.  Conditions for the occurence of phenomena  of  self-organization, 

collapse and disruption of solitons are derived.  Evolution of coherent Alfvbn 

waves,  driven  by a harmonic driver,  into chaos and turbulence is  presented. 

Similarities and differences, of the two approaches used, are pointed out. This 

article is  essentially an overview  of the  turbulent and chaotic Alfvh waves. 
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I.  INTRODUCTION 

Alfvkn  waves are a ubiquitous  feature of magnetoplasmas.  Implications of existence of 

large-amplitude Alfvkn  waves in many cosmic plasmas  have been investigated.  Some of these 

examples  include  turbulent  heating of solar coronal , coherent  radio emissions2, interstellar 

scintillations of radio sources3, generation of stellar  winds  and  extragalactic  jets  et^.^ Alfvkn 

wave trains  as well as Alfvknic turbulence  have long been  observed  in the solar wind5j6. 

Recently  Burlaga7  reported observations of some  chaotic  features , like multifractals  and 

intermittent  turbulence in the solar  wind. Observations of Alfvknic intermittent  turbulence 

are also reported by Marsch  and Liu' and  Tu  and  Marschg.  From  the Helios spacecraft data 

for the slow - speed  solar  wind flow, Macek" has  concluded the presence of an  attractor. All 

these observations are clear indications of the significance of investigating  the nonlinear and 

chaotic  behaviour of Alfvkn waves. In  the  present  paper, we have  tried  to give an overview 

of the  chaotic  and  turbulent Alfvkn  waves. 

To study  the  dynamical  behaviour of large-amplitude Alfvkn waves, one  can  either  use 

the full  set of dispersive MHD equations  and  be satisfied with  their  numerical solutions  or 

use an evolution equation  derived  from  these MHD equations.  The  most  popular evolu- 

tion  equation,  governing  nonlinear Alfvkn waves, is the Derivative  Nonlinear  Schrodinger 

(DNLS) eq~at i0n ' l - l~ .   The  big advantage of dealing  with  the DNLS is that it can  be solved 

a n a l y t i ~ a l l y ' ' ~ ~ ~ ~ ~ ~ .  Kaup  and Newell'' had obtained  its  solution by means of Inverse Scat- 

tering  Transform (IST) method.  They also showed that any  evolution  equation, e.g., the 

DNLS would give a soliton solution  independent of the  initial  condition  used  to solve the 

evolution equation. However, one  should  bear in mind  that  the DNLS is derived  on the 

assumption that plasma p (ratio of the  kinetic  pressure  to  the  magnetic  pressure) is not 

N 1. For systems with p - 1, kinetic  as well as  coupling  between  magnetic 

field flutuations  and  density  fluctuations20  become significant. To incorporate  these effects 

in the  studies of nonlinear  dynamical Alfvkn waves, one  has  to  do MHD21f22 and  kinetic 
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sir nu la ti on^^^. These  simulations show that  the Alfvkn solitons  get disrupted. Moreover, we 

see the  steepening of these waves besides the emission of radiation.  On  the  other  hand,  the 

driven DNLS equation  leads  to  chaos  and  turbulence in the Alfvknic systems 24-28. 

11. EVOLUTION EQUATIONS FOR NONLINEAR ALFVEN WAVES 

The governing  equations for large-amplitude Alfvkn Waves in a dispersive medium, like 

a  magneto-plasma,  are  the dispersive MHD equations: 

and 

%J - at + v * (pv) = 0, 

dB 1 
- = V x  dt [ ( v x B ) - - ( V x B ) x B  P 1 . 

In eq.(l) ,  B is normalized to Bo, p to p o ,  v to VA = B o / ( 4 ~ p ~ ) ' / ~  (VA being the  speed of 

Alfvkn Waves), t to inverse of ai, the ion cyclotron frequency  and 1 to VA/R;. The  subscript 

'0' refers to  the  equilibrium  quantities.  Note  that  the second term  on  the right hand  side of 

Eq.(lc) is due  to ion inertial effects in the generalized Ohms law. We may point out  that 

the set of Eqs.(l) holds good for multi-species plasmas16 with appropriately defined mass 

density p and pressure p .  However,  in this section we will consider  only two-species plasmas. 

A. Derivative  Nonlinear Schrodinger Equation 

We would like to  point  out  here  that  the  set of equations (1) would not  be valid for systems 

with p of order of unity  because in that case the  kinetic effects become important. Moreover 
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and 

dP 
- + - ( p w z )  = 0, at dz 

d d dB 
-(p.) + -(p.z6) - - = 0, d t  d X  8 X  

d B  d 
d t  ax  
- + -(vXB - 6) = 

dP 
- + - ( P 4  + (y - qp- = 0, 

dVX 

d t  a x  dX 

where w ,  is the flow velocity  along the  direction of propagation, y is the  ratio of the 

specific heat, B = (By + i B,) and 6 = ('uy + i u 2 ) .  For pressure, we have used the  adiabatic 

equation of state i.e., pp-7 = const. 

For P # 1, these  equations  have been simplified by using  reductive  perturbation 

m e t h ~ d P j ~ ~ - ~ ~ .  For magnetic  fluctuations  carried  to  third  order,  they yield the following 

evolution  equation: 

d B  1 d i d2 B -+ at 4 (1 - p )  d x  
- ( B  I B 1') f -- = 0. 2 8x2 

Equation (7) is the well known derivative  nonlinear  Schrodinger (DNLS) equation.  The plus 

and  minus signs in the last term correspond to left and right hand  polarization respectively. 

Equation (7) can  be solved analytically;  its  exact  solution is given by1'? 

where B, is the  amplitude of the soliton, 
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8 ( x , t )  = - V ,  z + 3 tan-'  [(2'i2 + 1) t anh(2x  x ) ] .  

8 is the  phase  and V ,  is the soliton  speed defined by, 

Hada  et al.15 had shown that Eq.(7) can give a variety of solutions,  namely, (1) periodic 

envelope  modulations; (2) monochromatic waves; (3) hyperbolic  solitons; (4) algebraic soli- 

tons.  On  using the Lagrangian  approach,  Kennel  et a1.12 had derived the vector derivative 

nonlinear  Schrodinger (VDNLS) equation that governs elliptically  polarized Alfvkn Waves. 

B. Modified Derivative  Nonlinear Schrodinger Equation 

The DNLS / VDNLS equations discussed in the previous  subsection  are  strictly valid 

for plasmas  with homogeneous densities  and  magnetic fields. By  using the  reductive per- 

turbation  method, B ~ t i ~ ~  had rederived the governing  evolution  equation for Alfvhn  waves 

in  inhomogeneous  plasmas. In this  derivation, even though no  explicit  assumption  about 

the homogeneity of the  magnetic field was made,  implicitly  the field considered was homo- 

geneous because of the  slab  geometry  used. To  overcome the restrictions  imposed by this 

implicit  assumption,  Buti  et al.34 have  incorporated  spherical  geometry.  On  using  equa- 

tions (1) in spherical co-ordinates and  assuming  no  variations  along 8 and 4 directions  i.e., 

8/80 = 8/84 = 0, Eqs. (1) reduce  to: 

dP 1 8  2 - + --(r pur) = 0, 
d t  r2 dr  
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and 

dB1 1 d 
d t  r d r  
- = " ( B , v l -  v,B1) + 

dr  

where r is the  radial  distance, B l  = (Bo, Bd),vl = ('ug, 'ud), and B: = (B i  + 0;). Once 

again, for pressure, we use the  adiabatic  equation of state i.e., pp-Y = const. In  order  to 

satisfy eq.(8a)  and  the  condition, diu Bo = 0, the  equilibrium  density po(r) and  the  magnetic 

field Bo(r) must satisfy the conditions: 

Bo(r)  r2 = const 

and 

po(r)  U ( r )  r2 = const.  (13) 

For weakly nonlinear  systems, we can  use  reductive  perturbation  scheme  to derive the 

evolution equation  from  Eqs.(ll). Following the  procedure  outlined in B ~ t i ~ ~ ,  we use the 

following stretchings: 

In Eq.( l l )  t: is the  stretching  parameter  and V ( r )  is the  phase velocity of the Alfvkn wave 

that is given by 

In  Eq.(15), U is the  equilibrium  streaming  plasma velocity. 

On using the expansions for density, velocity, pressure  and  magnetic field appropriate 

to   Alfvh Waves ( cf. B ~ t i ~ ~ ) ,  for a spherically symmetric  system, we obtain  the following 
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evolution (MDNLS) equation: 

dB 3 U B d -+- 
drl 2vrl B + 4 V ( V - U )  dq  

- (v’ - u’) 
i (V - U ) 2  d2  B = 0, 

,B, and Bo(q) is the  ambient  magnetic field. In 

deriving Eq. (16), we have  taken wave propagation  as well as the  ambient  magnetic field 

along the  radial  direction. As in the case of the DNLS, here also we have  neglected fifth 

order nonlinear terms.  This  equation, however, is valid for arbitrary  inhomogeneities. We 

may  note  that for nonstreaming  uniform  plasmas Le., for U = 0 and p o ( r )  = 1, V + 1 

and  Eq. (16) reduces to  Eq.(7). It is worth  noting  that  the roles of spatial  and  temporal 

variables are  interchanged. It is interesting  to  observe that this modified DNLS (Eq (16)), 

besides  having additional  two  linear  terms in B, has  variable co-efficients for nonlinear  and 

dispersive terms.  Because of these  complicated  variable co-efficients, it is not possible to 

find an  analytical  solution  to  Eq. (16) and  one  has  to look for its  numerical  solution. 

Equation (16) has  been solved numerically by means of the spectral collocation method. 

For the sake of computational  convenience, we rewrite  this  equation  as, 

Since  eq. (17) has  temporal  and  spatial variables interchanged, we write the approximate 

solution for B as  a  Fourier  expansion  in time  instead of space,  namely 

Note  that B is assumed to be periodic in time,  with  period T and  frequency = 27rk/T. 

For evaluation of the  cubic nonlinear term of eq.( 17), we use the 3/2 rule for d e a l i a ~ i n g ~ ~ .  
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According to  this  scheme,  the Fourier transform for the  nonlinear  term  can  be  represented 

In  order  to  be  sure that aliasing errors  are  not  introduced by this  form of approximate so- 

lution,  summation  index M must  be  greater  than 3 N / 2  ; N is the  summation  index used in 

Eq.( 18). This  simply  means  that  the  nonlinear  term is calculated by using  larger  number of 

grid  points  compared  to  the  number used in the original expansion for B in  Eq. (18). 

For the  numerical  solution of the MDNLS, we do  not  need  to  introduce  any artificial dis- 

sipation . In  our case, inhomogeneous  terms  formally  play  the role of effective dissipation. 

Moreover, the  iterative  scheme of dealiasing, that we have used for calculating nonlinearity, 

keeps the soliton  solution of the conservative  homogeneous DNLS unchanged for much longer 

distances  than  reported  here.  This could alternatively  be  achieved  even  without dealiasing, 

but  with  a  much finer grid. As mentioned  earlier,  the  problem of wave propagation is solved 

as  an  evolutionary  problem in space. For this  purpose, we assume  that  there is an influx of 

waves at  one  end of the  interval  (e.g., closer to  the  Sun in  case of the solar  wind plasma) 

and  the waves are  propagating  outward.  The influx is assumed  periodic in time. 

For the  numerical  solution, we have  considered the  evolution of an  initial Alfvgn soliton 

which is an  exact  solution of the DNLS equation  and is given, 

with 

3 
2 

8 (<) = - tan-  (sinh $) 
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and 

2 
V 

6 = - (1 - p) (V - U ) .  

.04 
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t ( lo4) 
FIG. 1. Shows the evolution of B / Bo(r0) with t for B,,, (Ro) = 0.036, Ro = 0.1 AU, Uo = 

1.5 VAO and /3 (Ro) = 0.05.  Curves  labelled 1, 2, 3, 4 and 5 correspond to T = 0.1  AU, 0.35 AU, 

0.5 AU, 0.7 AU and 0.9 AU. 
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FIG. 2. Shows the power spectra for magnetic  field at heliospheric distances 0.3 AU, 0.5 AU, 

0.7 AU and 0.9 AU. The parameters used are  same as for Fig.l. 

B,,, in Eq.(20) is the  amplitude of the  initial soliton normalized to Bo ( T O )  and L is the 



simulation box length. We  would like to  point  out that the solution given in Eq.(20) is 

different than  the  one given by Eq.(8).  In  the soliton  solution36 of the DNLS equation,  there 

are two arbitrary  constants tco and uo. For Eq.(8), we had  taken uo = 0 and now for Eq.(20) 

K O  has been taken  to  be zero. 

The  time evolution of the DNLS soliton at different spatial  distances,  from  the reference 

point ro, is shown  in  Fig.1. For the case of Alfvkn  waves propagating away from  the  sun 

in  the  interplanetary  medium,  this reference point  could  be Ro = O.1AU. From  this figure, 

we clearly see the  dissipative effects of the  inhomogeneities.  The  amplitude of the soliton 

goes down  as it propagates. Similar dissipative effects of inhomogeneities,  in  connection 

with modulated ion-acoustic waves, were reported by  Mohan  and B ~ t i ~ ~ .  We also see the 

steepening of the wave and  the high-frequency radiation on the  leading edges. MHD simu- 

lations  (see  sec.5)  as0  show  similar  behaviour. The  frequency  spectra for the  magnetic field 

intensites  are shown  in Fig.2. The  spectral  index, for the power-law spectra, is increasing 

with the  heliocentric  distance. We also see breaks in the  spectra.  The  break-point moves to 

the lower frequencies with the increasing distances  from  the  sun.  Similar  features  have  been 

observed  in the  turbulent solar  wind spectra5r3' by Mariner 5 and Helios 1 and 2. Buti  et 

al.34 had looked into  the  evolution of initial  circulatly polarized Alfvh  waves. The evolution 

in this case was found to  be  much slower compared to the case of the DNLS soliton. 

III. DRIVEN ALFVEN WAVES 

In section 11. we have  shown that  the finite  amplitude Alfvkn waves, in a homogeneous 

plasma,  are governed by the DNLS equation that gives coherent  structures like solitons. 

However if there is any  dissipation/damping in the  system,  one finds  shocks  instead of 

solitons3'. In  this  section, we will present  the  dynamics of nonlinear driven Alfvkn waves. 

For the  present discussion, we have picked up a simple  harmonic  driver, which modifies the 
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DNLS equation  to 

dB 1 d i d2 B 
dt  4 (1 - p )  d X  
-+ 1 

where  a is the  amplitude of the driver. The  external  driver in Eq.(24)  simply  acts as a 

source, which kills the  coherent  properties of the solitons. In case of localized stationary 

Alfvkn waves, it has  been  shown13*31~32~39 that  Eq.(24)  leads  to chaos under  certain  conditions. 

Unlike the DNLS Eq.(7),  Eq.(24)  can not be solved analytically.  This  equation is solved by 

spectral-collocation method  with periodic boundary  conditions. For the initial  condition we 

take a solitary Alfvkn wave packet,  namely 

where B, is the  amplitude of the soliton, 

6 ( x ,  t = 0) = -Kx + 3 tan-'[(21/2 + 1) tanh(2Kz)l (26) 

and V, is the soliton  speed defined by, 

Note  that  Eq. (25) is the super-Alfvknic  soliton  solution of Eq.(7) in the wave frame of 

reference16. Earlier,  Nocera  and B ~ t i ~ ~  had looked into  the evolution of the  driven  algebraic 

solitons of Eq.(7)  and  had  found  that  they  decay  into  hyperbolic solitons. 

A. Chaotic Alfvkn waves 

The  modulational  instability of the DNLS Eq.(7) is known to  depend on the sign of the 

product of the co-efficients of the nonlinear and  the dispersive terms.  Cosequently for p < 1, 

right-hand polarized (RHP) soliton is supposed  to  be  more  stable  compared  to  the  left-hand 

polarized (LHP) soliton. For ,l? > 1, the  stability  properties  are reversed. Our numerical 

simulations of Eq.(24) also confirm these conclusions. Unlike fusion plasmas, sola,r wind 
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has a variable p ,  which, depending on the  distance  from  the  sun,  can  be < 1 or even > 1. 

Closer to  the  sun, where Alfvkn Waves are  supposed  to  be  generated, p < 1 and  hence RHP 

driven soliton  should be  more  robust.  This is indeed the case  (cf.  Fig.4). We observe that 

the LHP soliton very quickly, even for a relatively weak driver, loses its coherent  properties 

and goes into  a  chaotic  state. For numerical  calculations, we have  scaled Eq.(24)  and  have 

taken L = 800 ( L  is the  simulation  box  length), /3 = 0.1, K = 0.08,R = and B, = 0.5. 

The values of K and R used here  are  arbitrary. We could pick up different numbers  but 

the  resultant  qualitative  behaviour does not  change.  This  driver could be easily taken as 

another coexisting wave; for this K: and R would be  related  through  its dispersion  relation. 

Our exercise here is a first step  to  be followed  by a different variety of drivers  e.g.,  a pulse, 

a  beam  etc. For the  parameters  used for the present calculations,  the  speed of the initial 

soliton,  in the solar wind frame of reference, turns  out  to  be  1.025V~.  The super-Alfvknic 

nature of the soliton is simply  because we have used the super-Alfvknic  solution (25) for 

the DNLS Eq.(7).  The  corresponding width of the soliton,  which is given by l/(2Vs), is - 20 ion inertial  lengths. We believe that such  large  amplitude pulses, distributed over very 

many ion inertial  lengths,  have  been  observed in space  plasmas. 

Fig.3 shows the  time  evolution of the  driven  left-hand soliton for various amplitudes 

of the  harmonic  driver. We find that even for an  extremely weak driver  with  amplitude 

A = 0.003 , LHP wave becomes  chaotic at T - 5 x lo5 (cf. Fig 3a). Note that 7- = t/(144) 

and A is the scaled amplitude ; A = (123/2)a.  The time-series corresponding  to  somewhat 

stronger  drivers  namely, A = 0.03 and 0.1 are shown  in  Figs.3b and 3c. From  these  two 

figures, we see that  the chaos sets in at T - 5 x lo4 and at T - 1.48 X lo4 for A = 0.03 

and A = 0.1 respectively. It is interesting  to  note  that  the  time  at which Alfvknic system 

becomes  chaotic scales as A-l. 
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0 0.6 1.2 1.8 
T (  lo4)  

FIG. 3. Transition of left-hand polarized soliton to chaos a)  at T N 5 x lo5 for A = 0.003, b) at 

T - 5 X l o 4  for A = 0.03, c) at T N 1.48 x lo4. for A = 0.1. Note that T = t/144. 

In contrast,  the RHP soliton is found to  be  much  more  robust  as  expected  from  the 

DNLS equation.  Time  evolution, of RHP soliton at x = L/8  ( L  being the  length of the sim- 

ulation  box),is shown  in Fig.4 for A = 0.01 (Fig.4a), 0.1 (Fig.4b)  and 0.5 (F ig .4~) .  Unlike 

the case of LHP soliton, RHP goes into a chaotic  state  only when it is driven by a real strong 

driver with A = 0.5. In case of weaker drivers (cf.  Fig.4a, 4b), only low level turbulence 

is generated which is seen in  between the  perturbed solitons. For this weak turbulence we 

have  calculated  the  space  as well as  time  correlations  and we find that  the  time correlations 
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are  destroyed  much  more quickly compared to  the  space correlations4'. 

-05 

0 0.5 1 . 0  1 .5  2.0 
( lo4) 

FIG. 4. Time series for evolution of RHP soliton at z = L/8  for a) A = 0.01, b) A = 0.1, C) 

A = 0.5. 

To get an insight into  the  spectral  behaviour of RHP Alfvkn solitons, we have  done high- 

resolution investigations of the  time series. This is presented in Fig.5. This figure illustrates 

the  time  evolution of the  turbulence shown in Fig.4a after a jump in the  phase of the  driver 

A@ = 2.876 was imparted  at T = 5.3 x lo5.  
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FIG. 5. Time evolution of the turbulence shown  in  Fig.4a during 7.56 x lo5 < T < 7.66 X lo5 .  
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FIG. 6.  Evolution  of  frequency spectral index  from  1.47  for the turbulence (shown in  Fig.5) 

in the interval  7.595 x lo5 < T < 7.630 x lo5 (solid line) to 1.87  for turbulence during 

7.630 x lo5 < T < 7.665 x lo5 (dotted line). 

The  frequency  spectra for the  turbulence in two  intervals,  namely, 7.595 x 10' < T < 

7.630 x lo5 (solid  line) and 7.630 x lo5 < T < 7.665 x 10' (clotted  line) of Fig.5, are shown in 

Fig.6. The  latter  one shows  two distinct  features.  First  the  frequency  spectral inclex goes up 

from 1.47 to 1.Si with  the  propagation of solitons.  Second we observe  break-point  (shown 
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by *) in the  spectra.  The  break-point is found to move  towards lower frequency with an 

increase  in the  spectral  index. Similar trend  has  been  reported in the observed solar-wind 

t ~ r b u l e n c e ~ ~ .  

B. Self - Organization / Pattern Formation 

Let us go back to  the RHP soliton and  drive it with a harmonic driver with amplitude 

A = 0.01. Its  evolution at T N 6 x lo5 is shown in Fig.7a  where we see a highly  peaked 

soliton with IB,,Z12 - 0.2 coexisting with a very weak background  turbulence.  The  width 

of this soliton,  which is given by (2 VS)-l, turns  out  to  be  approximately 1.7Rg (R ,  being 

the  gyro-radius).  Thus we are  observing  the 'collapsed'  soliton. For the  parameters used 

in section  3, R, in our  dimensionless  units (VA/R;) is 0.4. Similar collapsed soliton for the 

case of the  driver  with A = 0.1 appears  much  earlier at T N 1.4 x lo4 and with much  larger 

amplitude IB,,,12 - 0.5 (shown  in  Fig.7b).  The DNLS soliton,  in  our  case is collapsing 

mainly  due  to  its  interaction with the driver.  This is an  altogether different process com- 

pared  to  the collapse of an NLS soliton  which  occurs because of multi-  dimensional aspects41 

. We must  bear in mind  that while dealing with systems involving such  small scale lengths, 

kinetic effects should  be  properly  included. 

In  order to  ascertain  the  cause of the collapse of the DNLS  soliton, we introduced  a  jump 

A@ = 2.876 in the  phase Q, = ( K C Z  - Rt)  of the  driver at T = 5.3 x lo5 and  then  integrated 

Eq.(24) to  determine  its  evolution  between 7 = 5.3 x lo5 and T = 8 x lo5.  The  resulting 

evolution at T = 8 x lo5 is shown  in Fig.8. Once  again we see the  bifurcation of the  solution 

from  one  peak of Fig.7 to four peaks of Fig.8.  Here we find a  much bigger surprise. The 

four  narrow  pulses  in  Fig.8 turn  out  to  be  the four  solitons of our original nondriven DNLS 

equation (7). This is a clear demonstration of Self-organization  phenomena.  The  energy 

stored in the original one  soliton,  because of its  interaction  with  the  driver, is redistributed 
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into  the final four  solitons  which  have  speeds  four times  that of the original  soliton  i.e., 4 V,. 

i 

0 0.2 0.4 0.6 0.8 
x / L  

I B ~ ~  .25 
L -, 

0 0.2 0.4 0.6 0.8 
x / L  

FIG. 7. Collapse of RHP soliton due to  the driver with a) A = 0.01 at r - 6 X lo5 and b) 

A = 0.1 at r N 1.4 X lo4. 

In  order  to  determine  whether  the self-organization / pattern  formation  are  characteris- 

tics of the  initial soliton condition or of the  evolution  equation itself i.e., the DNLS, we had 

repeated  our  calculations for an  initially  structureless DNLS equation.  Once  again we found 

that  the  right-hand solutions are  stable  and  appear as elliptic  oscillation^^^*^^. The  left-hand 

solutions,  on the  other  hand,  do  start with elliptic  solutions  but unlike RHP solutions they 

are  found to  be  unstable.  These  ellipitic solutions  in turn  bifurcate  into  the bell-shaped  wave 

packets.  The  latter  (bell-shaped)  solution is also not  stable.  The  elliptic  and  the  bell-shaped 

solutions appear a l t e r n a t i ~ e l y ~ ~ .  So, we conclude that  the self-organization is generic to  the 
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DNLS equation. 

0.2 0.4 0.6 0.8 

x / L  
FIG. 8. Shows redistribution of energy into four solitons at T N 8 X lo5 due to  a phase  shift of 

2.678 imparted to the driver at T - 5.3 X lo5. 

C. Turbulence through  Chaotic Channel 

For the  chaotic  states shown in Figs. 3a-3c and  in Fig.4c, we have  calculated  the power 

spectra for the  magnetic field fluctuations.  The  results  are shown  in Fig.9. For LHP, with  a 

very weak driving  source ( A  = 0.003), we find an  exponentially  decaying  energy  spectrum. 

On  the  other  hand, for the  chaotic  states shown  in F i g . 3 ~  and Fig.4c, the  magnetic  energy 

scales as IC-' and for the case of chaos shown  in Fig.3b, it scales as k-1.5. These  indeed  are 

the  features of a fully  developed  turbulence.  In  all the  three cases we do see a break in the 

spectral  index.  These  results  have a lot of resemblance with the observations of solar-wind 

turbulence  reported by Bavassano et al.38. These  results  are in contrast  to  the  general feeling 

that  the  turbulence  can  be  generated  only by an  infinite  (or a very large)  number of modes. 

However one  can view the scenario presented  here  as  analogous to  the  system with a  finite 

but large number of modes.  This is indicated by Figs.Sa-Sc, which  show that the energy is 
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distributed  into a few tens of modes. It is worth  noting  that  the  turbulent  spectra, presented 

in  Fig.9, are  simply  due  to chaos in the  Alfvhic  systems. 

l o o  

I BJ 2 
10-2 

1 o - ~ ,  
1 o - ~  

0.01 k 0.1 
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1 o-2 
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1 0-8 
0.01 k 0.1 

FIG. 9. Shows Spectra for magnetic field turbulence generated through chaos  for a) RHP with 

A = 0.5, b) LHP with A = 0.1, c) LHP  with A = .03 and d) LHP with A = .003. 

IV. CONTROLLING CHAOS IN ALFVENIC SYSTEMS 

The  question of controlling  chaos, in  disssipative  systems, was first  discussed  by Ott  et 

al.43. The  chaotic  attractors,  associated with dissipative  dynamical  systems, usually  have a 

dense set of unstable periodic orbits  embedded in them. Ott et al. suggested that one  should 

first determine  some of the low-period unstable  periodic  orbits  embedded in the  chaotic at- 

tractor.  Then choose one,  out of these  unstable  orbits, which  yields  improved performance 

when a small  change is made in a parameter.  Finally  adjust  the  small  parameter in such 

a way that the  unstable periodic orbit is stabilized.  Here we suggest an  alternative way of 

controlling  chaos in nondissipative  systems e.g., a plasma which can be described as a driven 
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Hamiltonian  system. As a specific example, we have chosen magnetoplasma  with  more  than 

two  species. 

So far  our discussion has  been confined to  plasmas with only  two species e.g.,  hydrogen 

plasma. Very often, we encounter multispecies plasmas with electrons,  protons  and  heavy 

ions; the heavy  ions,  in laboratory  plasmas,  may  be  as  impurities  and in  some  natural 

plasmas  as  a  genuine  constituent, e.g.,  solar  wind is composed of electrons,  protons  and 

a-particles  (helium)  and  cometary  plasmas  have  water  group ions. To study  the  chaotic 

processes in  such  multispecies plasmas,  starting  from  the  corresponding  multi fluid equations 

we derived the evolution e q u a t i ~ n ' ~ ' ~ ~ ,  which is given by: 

where  subscript s 

the charge to mass 

- + + - ( B I B 1 2 ) & i l l ~  d B  d d2 B 
at = 0. ax 

with a and p defined by: 

refers to different species, y is the  ratio of the specific heat  and 2 is 

ratio. As a result of this,  the localized stationary Alfvkn  waves that are 

driven by a harmonic  driver  can be  represented by the following set of equations: 

where A is the  amplitude of the  driver  and H is the  Hamiltonian  given by, 

1 2 A  

2 2 H (8)  = -a (1 - p )  (B2 - 1) - - (6- 2,) , 
2 
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with [ = ( x  - V i ) / p  and 

To see the effect of the heavier  species, here we will present  the  results of cometary  plasma 

with oxygen ions as the  third species and also for the  dusty  plasmas. 

A. Cometary Plasma 

For cometary  plasma  with  10% oxygen  in abundance,  Poincare  maps, for the two-species 

and  the three-species plasmas,  are shown in Figs.10 and 11 r e s p e c t i ~ e l y ~ ~ ? ~ ~ - ~ ~  . Fo r  both  the 

figures, the  driver is the left hand  driver. Since  all the  parameters for both  the figures are 

the  same, Fig.11 shows the effect of the heavy ions (oxygen). Fig.10  shows that even for a 

weak driver  corresponding to A = 0.3, or even for smaller A (not shown here), Alfvkn  waves 

in a 2 - species plasma ( without  any  heavy ions or dust  grains)  become  chaotic. However, 

as shown  in  Fig.11,  in the presence of the heavier  oxygen  ions, the chaos  appears only when 

the driver is relatively much  stronger.  From  comparison of these  two figures, it is evident 

A =  0 A = 0.3 

BZ B Z  

FIG. 10. Poincarh  maps  for a driven Alfvhic system in a 2-species  plasma. 

that the chaos is reduced  due  to  the  presence of the oxygen - in other  words,  the  threshold 

for chaos goes up  because of heavy ions. Physically this could be  interpreted  as  the  inertial 
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stabilization  due to  the heavy  ions. 

A = 0.8 A = 5.0 

FIG. 11. Poincark maps for a driven Alfvknic system in 3-species cometary plasma with water 

group ions. 

B. Dusty Plasmas 

Dusty  plasmas  are prevalent  in many  cosmic  as well as  space  plasmas  such  as  planetary 

rings, planetary  magnetospheres,  cometary  environment,  interstellar  medium  et^.^^-^'. Here 

we would like to  distinguish  between  plasmas  with  a few dust  grains  and  the  plasmas  where 

dust  grains,  satisfying  the  condition Nd Xi > >  1 (Nd being the  density of charged  dust 

grains and A d  the Debye  length),  form  the  third  constituent of the  plasma.  Only  the  latter 

ones we would define as  dusty  plasmas;  such  plasmas,  one  encounters in process plasma e.g., 

chip manufacture besides the cosmic  plasmas. Unlike the  ordinary  plasmas,  dusty  plasmas 

have very massive  heavily  charged dust  grains. Moreover the charge  fluctuations in dusty 

plasmas  can  be very significant.  Nonlinear Alfvhn  waves in dusty  plasmas  are  governed by51, 

Eq. (33) is same as the  one for multispecies p l a ~ m a s l ~ ~ ~ ~  except for the  additional  (last  term) 

source term which is due  to  charge  fluctuations of the  dust  grains.  The co-efficients cyl,p1 

and SI for cold plasmas  are given by: 
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1 
a1 = - 

4 9'  

1 p s  (V - us)3 
P1 = - c 0, 

2g s 
1 

where p s  is the mass  density , 0, is the  cyclotron  frequency  and U is the drift  velocity  in 

equilibrium.  Note  that in the absence of any  equilibrium  drift  i.e., for Us = 0, the source 

term vanishes; in this case V reduces to  the Alfvhn speed ( VA = (B0/(47rp)1'2). For 3- 

species plasma with electrons,  protons  and  heavy  dust  grains,  these coefficients are  simply 

given by, 

a1 = 1 4 (1 + 
( P e  Pd  + P P I  )"" 7 

6, = 0. (354 

In  Eqs.(35),  the  subscripts  e,  p  and d represent  electrons,  protons  and  dust  grains respec- 

tively. For 2-species plasma i.e., for Nd = 0, note that V = g = 1, a1 = 1/4 and 

= 1/2. In writing  Eqs.(34), we have  made use of the  charge  neutrality  condition,  i.e., 

(Ne + ZdNd) = Np.  In  the  presence of an  external  driver,  Eq. (33) gets modified; the  source 

term S(zI, x ,  t )  appears on the right  hand side of Eq. (33)39. For a plane  circularly  polar- 

ized driver i.e., for S = A exp (i k [ ), Eq. (33) can  be  written in terms of the  Hamiltonian 

of the s y ~ t e m ~ l ' ~ ~ ,  namely 

dB,- - d H  A 
d l  dB, 2P1 
"" cos 6, 
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where [ = ( x  - V t )  / 2, A and R as the  amplitude  and  the  frequency of the driver and 

H the  Hamiltonian  that is given by, 

- 1 a1 2 A1 

2 P1 2 
H ( B )  = - -  (B2-1) - - (i-;.J , 

2 

with 

(37) 

and bo as the  asymptotic value of B. 

As mentioned  earlier,  dusty  plasmas  are  observed in nebulas,  planetary rings, planetary 

magnetospheres  and  cometary  environment. We have solved Eq. (36) numerically for the 

case of rings of Saturn  and for the  cometary cases. In  these  systems,  dust  grain size is 

typically a few microns  and  dust  mass is of the  order of 10l2 mp. The  dust  grains  carry very 

high charges5' ; typically zd N (lo3 - 104)e. However the  dust  number  densities could be 

as low as (lo-' - NP.  For these  parameters a1 and  simply  reduce  to, 

and 

Thus it is apparent that the  crucial  parameters,  governing  the  nonlinear  dynamics,  are  the 

mass  density  and  the  charge of the  dust  grains. 

The results of numerical  computations  are shown  in Figs.12 and 13. Fig.10 shows that 

even for a weak driver  corresponding to A = 0.3, Alfvkn  waves in a 2 - species plasma ( 

without  the  dust  grains)  become  chaotic. However  in dusty  plasmas  as shown  in Fig.12 for 
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cometary  plasmas  and in  Fig.13 for Saturn rings, Poincare  maps  do  not show any chaos. 

One  gets  only  periodic  orbits even for strong drivers with  amplitudes which are  order of 

magnitude larger compared  to  the  one for 2 - species plasma.  From  these  results (Figs.12 

and  13), we can  straightaway  conclude  that  the chaos in Alfvknic systems  simply  disappears 

due  to  the presence of massive  dust  grains. 

A = 0.3 A = 1.8 

FIG. 12. Same as Fig.10 but with the  dust grains with Nd/Np = 1.7 x zd = lo3, 

md / m p  = 10 . 12 

A =  10 

BZ 

A = 25 

BZ 

FIG. 13. Same as Fig.12 but for Saturn Rings  with Nd/Np = 4 x zd = lo4. 

Here we have confined ourselves to  dusty  plasmas  but  this  technique  can  be  fruitfully 

used for controlling  chaos  in other  plasmas e.g., fusion plasmas also. All that  one  has  to  do 
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is to  introduce a small  fraction of heavy  ions, like an  impurity,  in  the region that is chaotic. 

V. MHD SIMULATIONS 

As mentioned  above, for large amplitude waves (SB/B 2 1), the  approximations  made 

in the  derivation of the DNLS / MDNLS equations  become invalid because  the  derivation 

includes terms  only  up  to  cubic  nonlinearities. Moreover these  evolution  equations  are not 

valid for p N 1. For p N 1, coupling  between Alfvkn  waves and ion acoustic waves becomes 

I ‘ I  I 

0 -85 1.7 2.5 

.20 
B 

- 1  0 

0 
0 .85 1 . 7  2.5 

FIG. 14. Evolution of magnetic field fluctuations for a RHP soliton for a) ,8 = 0.3, and b) ,L? = 1.5 

at t = 0 (dashed  line)  and t = 5000 (solid line) 

significant.  one  could  overcome these  limitations by doing  simulations. For this  purpose let 
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us  go back to  the full  set of Hall-MHD equations,  namely Eqs. (2) - (6). These  equations 

are solved by using  periodic boundary  conditions  and by taking  the DNLS soliton  solution, 

6P 
0.04 

0.02 

0.00 

-0.02 1 
0 .85 1.7 2.5 

X ( lo3) 
I 

- 

I 1  
I '  
I '  
I 1  
\ I  
\ I  

-0.04 - - 

-0.06 . 

0 .85 1.7 2.5 
X ( 103) 

FIG. 15. Evolution of density fluctuations for a RHP soliton for a) /3 = 0.3, and b) p = 1.5 at 

t = 0 (dashed line) and t = 5000 (solid line) 

given by Eqs. (25) - (27),  as  an  initial  condition21*22. Unlike fusion plasmas,  some of the 

space  plasmas  have p > 1. In  the solar wind, p ,  T, and T; all vary with heliospheric distance. 

In  particular, p spans  the  entire  range  from p < 1 to /? > 1. To investigate  the  stability 

of the  initial DNLS soliton, we have  done the  simulations for different values of p ;  spatio - 

temporal  evolutions of the RHP solitons are shown  in  Figs. 14 and 15. We observe  a wave 

train on the  leading  edge for p < 1 (cf.  Fig.14a) and  on  the  trailing  edge for p > 1 (cf. 

Fig.14b). However in  both cases the  amplitude of the soliton goes down. It is interesting  to 

compare  this with the  evolution of the  magnetic field of the LHP initial soliton. In  the  latter 
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case wave train  appears on the leading edges21 for p < 1 as well as for /3 > 1. Moreover, 

in this case the  amplitude was found to  increase  (decrease) for ,O < 1( > 1) as the soliton 

evolved. We had  observed  similar  behaviour 22 for plasmas with much  smaller /3 e.g.,  solar 

corona  with p = 0.05. Buti  et a1.21 had  considered the case with  much  higher /3 also and 

showed that for /3 = 3 for the RHP soliton, by t = 5000, the wave train  disappears. So it is 

pretty obvious that  the soliton is disrupted  simply  because of the higher  order  nonlinearities 

that are neglected  in the DNLS / MDNLS equations.  In  fact we had shown22  that  the 

disruption  time scales as By4. The  density  fluctuations  that  are  taken  as  sort of static 

in the DNLS description,  are also  found to evolve (see  Fig.15). Unlike the  driven soliton 

that evolves into fully  developed  turbulence  (see Fig.9) through  chaotic  channels, in  all the 

cases that we have  considered so far21j22 for our MHD simulations, we find that  neither 

the higher order  nonlinearities nor the coupling of magnetic field and  density  fluctuations 

lead to Alfvknic turbulence. We are  persuing  the MHD as well as  hybrid  simulations with 

larger-amplitude solitons to see if there is any possibility of generating  turbulence  through 

nonchaotic channels. 

VI.  CONCLUSIONS 

The coherent  properties of the DNLS solitos are  destroyed by a variety of sources,  e.g., 

inhomogeneities  in the  plasma  densities  and  the  magnetic fields, coupling of magnetic field 

and  density  fluctuations,  higher  order  nonlinearities that are neglected  in the derivation of 

the evolution equation  and  some  external  source like a harmonic  driver.  The  right-hand 

polarized  soliton is much  more  robust  compared  to  the  left-hand polarized one. However 

both,  under different conditions  can lead to  chaotic Alfvkn  waves and  the chaos in  turn  leads 

to Alfvknic turbulence. The power spectra of the  magnetic field  is found to  be very  similar 

to  the one  observed  in the solar  wind. The  phenomena of self-organization and collapse are 

also observed  during  the  dynamical evolution of the Alfvkn  waves. 
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